# C.U.SHAH UNIVERSITY Winter Examination-2022

#### Subject Name: Problem Solving -I

| Subject Code: 5S | C02PRS1          | Branch: M.Sc. (Mathematics) |           |  |
|------------------|------------------|-----------------------------|-----------|--|
| Semester: 2      | Date: 21/09/2022 | Time: 11:00 To 02:00        | Marks: 70 |  |

#### **Instructions:**

- (1) Use of a Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on the main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

## SECTION – I

| Q-1        |    | Attempt the Following questions                                                                                                                                                                                   | [07] |
|------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|            | a. | True/False: Any subset of linearly independent set is linearly. independent set.                                                                                                                                  | (01) |
|            | b. | Check whether the set {(4,5,3), (1,0,2), (0,0,0)} is basis of $R^3(R)$ ?                                                                                                                                          | (02) |
|            | c. | Find C.F. of $(D^2 - 4D + 4)y = x^3 e^{2x}$ .                                                                                                                                                                     | (02) |
|            | d. | Check whether the set $\{(x, y, z) \in R^3 : x + y = 1\}$ is a subspace of $R^3$ or not?                                                                                                                          | (02) |
| <b>O-2</b> |    | Attempt all questions                                                                                                                                                                                             | [14] |
| C          | a. | Let $W_1, W_2$ and $W_3$ be subspaces of a vector space V such that $W_2 \subseteq W_1$ ,<br>show that $W_1 \cap (W_1 + W_2) = W_2 + (W_1 \cap W_2)$                                                              | (05) |
|            | b. | Let $V = \{f \mid f: R \to R\}$ be a vector space over $R \cdot V_e$ and $V_o$ be the set<br>of even and odd functions respectively. Show that $V_e$ and $V_o$ are subspaces<br>of $V$ and $V = V_e \oplus V_o$ . | (05) |
|            | c. | Find modulus and argument of the complex number $z = (4 + 2i)(-3 + \sqrt{2}i)$                                                                                                                                    | (04) |
|            |    | OR                                                                                                                                                                                                                |      |
| Q-2        |    | Attempt all questions                                                                                                                                                                                             | [14] |
| -          | a. | Find complex number z if arg $(z + 1) = \frac{\pi}{6}$ and $\arg(z - 1) = \frac{2\pi}{3}$ .                                                                                                                       | (05) |
|            | b. | Check whether the function $f(z) = \begin{cases} \frac{Re(z)}{z} & z \neq 0\\ 0 & z = 0 \end{cases}$ is continues at 0 or                                                                                         | (05) |
|            | c. | not ?<br>Find P.I. of $(D^2 + 5D + 4)y = x^2 + 9x + 4$ .                                                                                                                                                          | (04) |
| Q-3        |    | Attempt all questions.                                                                                                                                                                                            | [14] |
|            | a. | Solve: $(D^4 + 2D^2 - 3D)y = 3e^{2x} + 4\sin x$ .                                                                                                                                                                 | (06) |



**b.** Solve: 
$$(2xy + y - \tan y) dx + (x^2 - x \tan^2 y + \sec^2 y) dy = 0.$$
 (06)

**c.** Solve: 
$$\frac{d^3y}{dx^3} - 4\frac{d^2y}{dx^2} + 5\frac{dy}{dx} - 2y = 0$$
. (02)

$$\frac{1}{3} - 4\frac{1}{dx^2} + 5\frac{1}{dx} - 2y = 0$$
.  
OR

Q-3

[14]

**a.**  
Find a matrix *P* that diagonalize 
$$A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$
. Hence find  $A^{13}$ . (07)

**b.**  
Find the rank of matrix by normal form, where 
$$A = \begin{bmatrix} 1 & 2 & 3 & 2 \\ 2 & 3 & 5 & 1 \\ 1 & 3 & 4 & 5 \end{bmatrix}$$
. (04)

c. Check whether the set  $\{1, i\}$  is linearly dependent in vector space C(C) or (03)not?

### **SECTION – II**

| Q-4 |    | Attempt the Following questions                                                                                                                                                                                                | [07] |
|-----|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|     | a. | Let V denotes the vector space of $7 \times 7$ real skew symmetric matrices then dim $V = $                                                                                                                                    | (01) |
|     | b. | Solve $(xy^2 + x)dx + (yx^2 + y)dy = 0.$                                                                                                                                                                                       | (02) |
|     | c. | Find the two numbers whose sum is 4 and product is 8.                                                                                                                                                                          | (02) |
|     | d. | Let <i>A</i> be an $3 \times 3$ matrix with eigenvalues 1, -1,0. Then the determinant of $I + A^{100}$ is                                                                                                                      | (02) |
| Q-5 |    | Attempt all questions                                                                                                                                                                                                          | [14] |
|     | a. | For which values of 'a' will the following system have no solutions?<br>Exactly one solution ?Infinitely many solutions ?<br>$x + 2x - 2z = 4 - 2x - x + 5z = 2 - 4x + x + (a^2 - 14)z = a + 2$                                | (06) |
|     | b. | $x + 2y - 3z = 4$ , $3x - y + 5z = 2$ , $4x + y + (a^2 - 14)z = a + 2$ .<br>Let <i>T</i> be a linear transformation on $R^2$ defined by<br>$T(x, y) = (2x + y, 3x + 2y)$ .Show that <i>T</i> is invertible and find $T^{-1}$ . | (06) |
|     | c. | Evaluate : $\int_{ z+1 =2} \frac{z^2}{4-z^2} dz$ .                                                                                                                                                                             | (02) |

#### OR

| Q-5<br>a. |    | Attempt all questions                                                                  | [14] |
|-----------|----|----------------------------------------------------------------------------------------|------|
|           | a. | Solve: $x^4 \frac{d^3y}{dx^3} + 2x^3 \frac{d^2y}{dx^2} - x^2 \frac{dy}{dx} + xy = 1$ . | (06) |
|           |    | $ax^3$ $ax^4$ $ax^5$                                                                   |      |

**b.** Solve: 
$$x^2 y \, dx - (x^3 + y^3) \, dy = 0.$$
 (05)  
**c.**  $\tan\left(\frac{z}{2}\right) + c = 0.$  (03)

c. Evaluate:  $\int_{C} \frac{\tan(\frac{z}{2})}{(z-1-i)^2} dz$ ; C: Rectangle with vertices at  $\pm (2+2i)$ .

#### Q-6 Attempt all questions

- a. Let A be  $6 \times 6$  matrix over R with characteristic polynomial  $(x-3)^2(x-2)^2$  and minimal polynomial  $(x-3)(x-2)^2$ . Find Jordan (06) Canonical form of *A*.
- **b.** Show that  $f(z) = |z|^2$  is differentiable only at origin. (05)

**c.** Express the number 
$$z = \frac{1}{2-3i} + \frac{5-i}{6+2i}$$
 into  $x + iy$  form. (03)



[14]

#### OR

#### **Attempt all Questions** Q-6

- [14] **a.** Show that  $u(x, y) = e^{-2xy} \sin(x^2 - y^2)$  is a harmonic function. Find the (07)conjugate function v(x, y) and an analytic function f(z) for which
- b. If  $f(z) = \frac{z}{(z-2)(z+i)}$  then expand f(z) in Laurent series in powers of z in the region 1 < |z| < 2. (07)

